Posts

Simple Ham Radio Antennas: The W3EDP antenna revisited. Post #261

Image
The "classic" W3EDP antenna has been around since March 1936 when Yardley Beers (W3AWH/W0JF) described a multiband antenna built by his friend H.G. Siegel (W3EDP).  Siegel used the traditional method of "cut and try" to arrive at an antenna length that would work satisfactorily on 160, 80, 40, 20, and 10 meters. Beers remembered that "A length of 84 feet (25.60 meters) seemed to stand out as being the best of all the combinations tried."  A similar "test and tune" method was used to determine a satisfactory counterpoise length of 17 feet (5.18 meters), "as the one working best in combination with the antenna." Since that time, several variations of this true "Zepp" antenna have been developed to facilitate portable, emergency, and even home use.  Many QRP enthusiasts use some kind of W3EDP-derived antenna for their operations.  The W3EDP antenna is a simple, cheap, and field deployable.  The antenna requires a 1:1 or 4:1

Basic DX tips. Post #260

Image
One of my favorite pursuits in amateur radio is chasing DX (distance) contacts with hams living or visiting in remote places of the world, be they small nations, islands, or even mountain tops.  Each contact is a small adventure to a place I may never see. For the dedicated contester or DX enthusiast, there are many attractive awards (i.e. DXCC , WAS, WAC, etc.) to pursue. I'm more of a "casual" DXer , squeezing in contacts when house building or part-time teaching permit.  For those moments when I'm free of family responsibilities, I enjoy listening and working exotic, far off places.  Since I live on Hawaii Island , I'm often the "target" of DXers...a task I thoroughly enjoy. During my 37 years as an amateur radio operator, I've experienced both the joy of making a rare contact and the frustration of losing some elusive call in a rush of QRM.  Such is the DX experience. There must be an easier way of making DX contacts than wading through a

Simple Ham Radio Antennas: A Low HF Band Triangle. Post #259

Image
Over the past few years, I've built a variety of HF antennas for my amateur radio station.  All of my verticals, inverted vees, dipoles, and loops have been a learning experience, especially when I've been faced with limited resources and space.  Operating from an apartment or a home governed by CC&Rs and HOAs has been a challenge. Now that I'm slowly moving into a full acre of space in the rural Puna District of Hawaii Island, my space restrictions are gone and there are no committees to oversee my antenna activities.  I count this as a definite blessing.  For the first time in many years, I can build full sized dipoles, verticals with a decent ground system, and large full-wave loop antennas without interference.  Since my new property is surrounded by tall trees approaching 50 feet/15.24 meters, my antennas are well shielded from prying eyes.  When I operate out of my rental home in Laupahoehoe, I'm still hemmed in by utility poles and neighbors.  My antenna

Simple Ham Antennas: The AG9C Loop Antenna. Post #258

Image
Over the past 37 years as a licensed amateur operator, I've accumulated a wide variety of antenna reference material, including books, magazine articles, and topics discussed on amateur radio forums.  All ARRL members can further augment their antenna research by accessing the digital files of " QST ", the offical journal of the ARRL.  All told, there is an almost endless resource of antenna building ideas for most every ham station. Recently, I began to put some of these "classic ideas" to use on my new property in the Puna District of Hawaii Island .  I now have an acre of space to "plant" my antenna "farm"--quite a change from my present rental home which is hemmed in by neighbors and utility poles.  Although my neighbors have been tolerant of my amateur radio pursuits, I try to keep a low profile.  Namely, my verticals and inverted vees are usually lowered when they are not in use and, because of my part-time employment as a sports an

Simple Ham Radio Antennas: Antennas without tuners, part 4. Post #257

Image
So far, the "tunerless" antennas I've built have worked very well.  They have been made with locally available materials from my "junk" box, neighborhood garage sales, and the nearby Ace Hardware Store.  These antennas have consisted of individual dipoles/inverted vees for my bands of preference (40, 20, 15, 10 meters), telescoping fiberglass masts (33-ft/10.06 meters tall), a single RG -8X coaxial feed line , and supporting wooden stakes or tree branches. Dipoles for each band were built on the ground and were later hoisted into position via a halyard and pulley system.  A "choke balun" made from part of the RG-8X feed line was attached to the mast just below the center connector at the top of the mast. In my first multiband antenna system, I changed bands by lowering and raising the appropriate antenna into place.  I couldn't change bands by staying in the shack. My second system was a modified "fan dipole/inverted vee" using mul

Simple Ham Radio Antennas: Antennas without "tuners", part 3. Post #256

Image
In some of my previous posts, I've investigated, built, and used multiband dipole and inverted vees using a single 50 ohm coaxial feed line .  With a telescoping fiberglass mast (33-ft/10.06 meters extended), a simple halyard and pulley system, and separate antennas cut for each band of use (40, 20, 15, and 10 meters), I've been able to change bands fairly quickly by lowering the dipole/inverted vee elements, substituting those of another band, and raising the new antenna.  With each band element cut for the desired frequency, the efficiency is high with low swr for that band.  Since each antenna element is trimmed for the lowest swr at my mast location, an antenna transmatch isn't necessary.  Sometimes, as in the case with the 40 meter dipole/inverted vee, an antenna cut for the cw portion of the 7 MHz band will often work well on the phone portion of 15 meters (21 MHz band). The 15 meter band will operate on the third harmonic of the 40 meter band . In order to save

Simple Ham Radio Antennas. Antennas without "tuners". Part 2. Post #255

One of the more popular amateur radio antennas is the multiband "Fan Dipole" and its close relative the multiband inverted vee "Fan Dipole."  According to Howard (W6HDG), the Fan Dipole "consists of  two or more distinct half wave dipoles which are mounted to a common parallel feed point so that a single feed line can be utilized."  With a little ingenuity and careful trimming, it is possible to make a single band dipole antenna work on several bands just by adding half wavelength dipoles for your favorite band to the center coax connector and by "fanning them out" below the dipole for the lowest frequency.  Add a 1:1 balun or a "choke" balun below the center connector, connect some 50 ohm coaxial cable, run the cable to your rig, and you're ready to go on your favorite bands without a "tuner" and a ground radial system. According to Simone (IW5EDI), "an antenna like this works on multiple bands because the antenna